Resistance of isolated mammalian spinal cord white matter to oxygen-glucose deprivation.
نویسندگان
چکیده
We found that isolated guinea pig spinal cord white matter is resistant to acute oxygen-glucose deprivation. Sixty minutes of oxygen-glucose deprivation resulted in a 60% reduction of compound action potential (CAP) conductance, and there was a near complete recovery after 60 min reperfusion. Corresponding horseradish peroxidase-exclusion assay showed little axonal membrane damage. To further deprive the axons of metabolic substrate, we added 2 mM sodium cyanide or 2 mM sodium azide, both mitochondrial suppressors, to the ischemic medium, which completely abolished CAP and resulted in a 15 to approximately 30% recovery postreperfusion. Both compounds preferentially reduced the conductance of large diameter axons. We suggest the residual ATP in our ischemic model can protect anatomic integrity and physiological functioning of spinal axons following ischemic insult. This further suggests that oxygen-glucose deprivation alone cannot be solely responsible for short-term functional and anatomic damage. The damaging effects of ischemia in vivo may be mediated by factors originating from the gray matter of the cord or other systemic factors; both were largely eliminated in our in vitro white matter preparation.
منابع مشابه
Effects of the noradrenergic system in rat white matter exposed to oxygen-glucose deprivation in vitro.
Norepinephrine (NE) is released in excess into the extracellular space during oxygen-glucose deprivation (OGD) in brain, increasing neuronal metabolism and aggravating glutamate excitoxicity. We used isolated rat optic nerve and spinal cord dorsal columns to determine whether the noradrenergic system influences axonal damage in white matter. Tissue was studied electrophysiologically by recordin...
متن کاملHistomorphometric study of the spinal cord segments in the chick and adult male ostrich (Struthio camelus)
In this study, the vertical, transverse and oblique diameters of the spinal cord segments (C1, C6, C12, C18, T1, T4, L1, L4, L6 and L8) and the ratio of gray matter to white matter in chick (l month) and adult (18 months) male ostriches, each group consisted of 3 animals, were measured with standard micrometric method using 6 μm thick sections by light microscope. With advancement of age, the r...
متن کاملComparative histomorphometric study of the various segments of the spinal cord in the adult male and female mongoose (Herpestes edwardsii)
Background: Anatomical and histological studies of the spinal cord have always garnered anatomists’ attention because of their high importance in various fields of veterinary medicine, zoology and behavioral science. OBJECTIVES: This work was conducted to understand the detailed histomorphometric aspects of the spinal cord of Indian gray mongoose (Herpestes edwardsii). METHODS: Six adult Indian...
متن کاملAxon conduction and survival in CNS white matter during energy deprivation: a developmental study.
We investigated the postnatal development of axon sensitivity to the withdrawal of oxygen, glucose, or the combined withdrawal of oxygen + glucose in the isolated rat optic nerve (a CNS white matter tract). Removal of either oxygen or glucose for 60 min resulted in irreversible injury in optic nerves from adult rats, assessed by loss of the evoked compound action potential (CAP). Optic nerves a...
متن کاملChanges in gap junction expression and function following ischemic injury of spinal cord white matter.
Gap junctions are widely present in spinal cord white matter; however, their role in modulating the dynamics of axonal dysfunction remains largely unexplored. We hypothesized that inhibition of gap junctions reduces the loss of axonal function during oxygen and glucose deprivation (OGD). The functional role of gap junctions was assessed by electrophysiological recordings of compound action pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 283 3 شماره
صفحات -
تاریخ انتشار 2002